扩散MRI拖拉术是一种先进的成像技术,可实现大脑白质连接的体内映射。白质拟层将拖拉机分类为簇或解剖学上有意义的区域。它可以量化和可视化全脑拖拉学。当前,大多数拟层方法都集中在深白质(DWM)上,而由于其复杂性,更少的方法解决了浅表白质(SWM)。我们提出了一种新型的两阶段深度学习的框架,即浅表白质分析(SUPWMA​​),该框架对全脑拖拉机的198个SWM簇进行了有效且一致的分析。一个基于点云的网络适应了我们的SWM分析任务,并且监督的对比度学习可以在SWM的合理流线和离群值之间进行更多的歧视性表示。我们在大规模拖拉机数据集上训练模型,包括来自标签的SWM簇和解剖学上难以置信的流线样本的简化样品,我们对六个不同年龄和健康状况的独立获取的数据集进行测试(包括新生儿和具有空间型脑肿瘤的患者) )。与几种最先进的方法相比,SupWMA在所有数据集上获得了高度一致,准确的SWM分析结果,在整个健康和疾病的寿命中都良好的概括。另外,SUPWMA​​的计算速度比其他方法快得多。
translated by 谷歌翻译
白质图微观结构已显示出影响认知表现的神经心理学评分。但是,尚未尝试从白质图数据中预测这些分数。在本文中,我们提出了一个基于深度学习的框架,用于使用从扩散磁共振成像(DMRI)片段估计的微观结构测量结果进行神经心理学评分的预测,该框架的重点是基于接受语言的关键纤维纤维小道的接受性词汇评估任务的性能弓形筋膜(AF)。我们直接利用来自纤维道中所有点的信息,而无需按照传统上沿着光纤的平均数据进行扩散MRI Tractometry方法所要求的。具体而言,我们将AF表示为点云,每个点都有微观结构测量,从而可以采用基于点的神经网络。我们通过拟议的配对 - 塞亚姆损失来改善预测性能,该损失利用了有关连续神经心理学评分之间差异的信息。最后,我们提出了一种关键区域定位(CRL)算法来定位包含对预测结果有很大贡献的点的信息解剖区域。我们的方法对来自人类Connectome项目数据集的806名受试者的数据进行了评估。结果表明,与基线方法相比,神经心理评分的预测表现优异。我们发现,AF中的关键区域在受试者之间非常一致,额叶皮质区域的强大贡献最多(即,尾部中间额叶,pars opercularis和pars triangularis)与关键区域有着强烈的影响用于语言过程。
translated by 谷歌翻译
扩散MRI拖拉术是一种用于定量映射大脑结构连接性的高级成像技术。全脑拖拉机(WBT)数据包含数十万个单独的纤维流线(估计的大脑连接),并且通常会对这些数据进行分类,以创建用于数据分析应用(例如疾病分类)的紧凑表示形式。在本文中,我们提出了一种新颖的无拟合WBT分析框架Tractoformer,该框架在单个纤维流线的水平上利用拖拉术信息,并提供了使用变压器注意机制来解释结果的自然机制。 Tractoformer包括两个主要贡献。首先,我们提出了一个新颖而简单的2D图像表示WBT,Tractobedding,以编码3D纤维空间关系以及可以从单个纤维(例如FA或MD)计算的任何感兴趣的特征。其次,我们设计了一个基于视觉变压器(VIT)的网络,其中包括:1)数据增强以克服小数据集上过度适应模型的数据,2)识别判别纤维以解释结果,3)合奏学习以从不同大脑区域。在合成数据实验中,TractoFormer成功地识别了具有模拟组差异的判别纤维。在比较几种方法的疾病分类实验中,tractoformer在分类精神分裂症与对照方面达到了最高的精度。在左半球额叶和顶浅的白质区域中鉴定出判别性纤维,这些区域以前已被证明在精神分裂症患者中受到影响。
translated by 谷歌翻译
白质纤维聚类(WMFC)是白质细胞的重要策略,可以对健康和疾病中的白质连接进行定量分析。 WMFC通常以无监督的方式进行,而无需标记地面真相数据。尽管广泛使用的WMFC方法使用经典的机器学习技术显示出良好的性能,但深度学习的最新进展揭示了朝着快速有效的WMFC方向发展。在这项工作中,我们为WMFC,深纤维聚类(DFC)提出了一个新颖的深度学习框架,该框架解决了无监督的聚类问题,作为具有特定领域的借口任务,以预测成对的光纤距离。这使纤维表示能够在WMFC中学习已知的挑战,即聚类的敏感性对沿纤维的点排序的敏感性。我们设计了一种新颖的网络体系结构,该网络体系结构代表输入纤维作为点云,并允许从灰质拟合中纳入其他输入信息来源。因此,DFC利用有关白质纤维几何形状和灰质解剖结构的组合信息来改善纤维簇的解剖相干性。此外,DFC通过拒绝簇分配概率低的纤维来以自然方式进行异常去除。我们评估了三个独立获取的队列的DFC,包括来自220名性别,年龄(年轻和老年人)的220名个人的数据,以及不同的健康状况(健康对照和多种神经精神疾病)。我们将DFC与几种最先进的WMFC算法进行比较。实验结果表明,DFC在集群紧凑,泛化能力,解剖相干性和计算效率方面的表现出色。
translated by 谷歌翻译
Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.
translated by 谷歌翻译
代理商必须连续监视其伴侣的情感状态,以了解和参与社交互动。但是,评估情感识别的方法不能说明在情感状态之间的阻塞或过渡期间可能发生的分类绩效的变化。本文解决了在婴儿机器人相互作用的背景下影响分类表现的时间模式,在这种情况下,婴儿的情感状态有助于他们参与治疗性腿部运动活动的能力。为了支持视频记录中面部遮挡的鲁棒性,我们训练了婴儿使用面部和身体功能的识别分类器。接下来,我们对表现最佳模型进行了深入的分析,以评估随着模型遇到丢失的数据和不断变化的婴儿影响,性能如何随时间变化。在高度信心提取功能的时间窗口期间,经过训练的面部功能的单峰模型与在面部和身体特征训练的多模式模型相同的最佳性能。但是,在整个数据集上评估时,多模型模型的表现优于单峰模型。此外,在预测情感状态过渡并在对同一情感状态进行多个预测后改善时,模型性能是最弱的。这些发现强调了将身体特征纳入婴儿的连续影响识别的好处。我们的工作强调了随着时间的流逝和在存在丢失的数据的存在时,评估模型性能变异性的重要性。
translated by 谷歌翻译
尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
膝关节X射线上的膝盖骨关节炎(KOA)的评估是使用总膝关节置换术的中心标准。但是,该评估遭受了不精确的标准,并且读取器间的可变性非常高。对KOA严重性的算法,自动评估可以通过提高其使用的适当性来改善膝盖替代程序的总体结果。我们提出了一种基于深度学习的新型五步算法,以自动从X光片后验(PA)视图对KOA进行评级:(1)图像预处理(2)使用Yolo V3-tiny模型,图像在图像中定位膝关节, (3)使用基于卷积神经网络的分类器对骨关节炎的严重程度进行初步评估,(4)关节分割和关节空间狭窄(JSN)的计算(JSN)和(5),JSN和最初的结合评估确定最终的凯尔格伦法律(KL)得分。此外,通过显示用于进行评估的分割面具,我们的算法与典型的“黑匣子”深度学习分类器相比表现出更高的透明度。我们使用我们机构的两个公共数据集和一个数据集进行了全面的评估,并表明我们的算法达到了最先进的性能。此外,我们还从机构中的多个放射科医生那里收集了评分,并表明我们的算法在放射科医生级别进行。该软件已在https://github.com/maciejmazurowowski/osteoarthitis-classification上公开提供。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译